This month, researchers and developers from Evonik are starting a three-year collaboration with scientists from the renowned Stanford University in California. Together, they want to expand the possible applications of mRNA therapeutics so that they can better combat diseases such as cancer and AIDS in the future. The goal is to develop a technology for delivering mRNA to tissues and organs that goes beyond the current possibilities of lipid nanoparticles (LNP). To this end, the experts are developing a polymer-based system that Evonik will license and market.
This polymer-based platform complements the existing portfolio of lipid-based drug delivery technologies, including LNP. So-called drug delivery technologies are imperative for mRNA therapies to target and safely deliver active ingredients to their site of action in the body. With this new technology, the company is accelerating the portfolio shift of the Nutrition & Care life science division towards system solutions. The division aims to increase the share of such system solutions from 20 percent today to more than 50 percent by 2030.
“We are proud to partner with Stanford and combine our innovation in advanced drug delivery technology. With this project, we are developing the next generation of mRNA-based medicine.”
- Dr. Thomas Riermeier, Head of the Health Care Business Unit
Effective and safe delivery of mRNA in the cell is one of the major challenges for expanding the use of corresponding therapeutics to promising areas such as cancer immunotherapy, protein replacement and gene editing. The company sees itself here as a leading integrated development and manufacturing partner for drug delivery systems for the pharmaceutical industry. Currently, the accessible market potential for LNP-based delivery systems is estimated to exceed $5 billion by 2026.
“If we are to realize the full potential of mRNA therapeutics, we need a range of technologies that target an expanded range of tissues and organs,” said Dr. Stefan Randl, head of research, development and innovation at Evonik Health Care. “We look forward to commercializing the new platform in collaboration with Stanford University.”
The group will work with scientists at the university to scale up the synthesis and formulation and further develop the innovative organ-selective delivery technology based on a non-animal, synthetic polymer that is degradable in the body. As an integrated development and manufacturing partner for gene therapies, the Group aims to make this technology available in Good Manufacturing Practice (GMP) quality for use in clinical development stages and ultimately at commercial scale.
The new polymer-based delivery platform CART (Charge Altering Releasable Transporters) was developed by Professor Robert Waymouth, Professor Paul Wender and Professor Ronald Levy of Stanford University.