Connect with us


News

Method for rapid species splitting in coral reefs

Published

on


News, Processing Technologies, Safety & Security, Water & Waste Water

In the journal Proceedings of the National Academy of Sciences of the USA, scientists from the Leibniz Center for Tropical Marine Research (ZMT) investigate the genetic mechanisms underlying the rapid speciation of coral reef fishes.

The evolutionary process, in which animals form different species within a short period of time, often takes place in newly formed or geographically isolated habitats such as islands. There, the founder species encounter unoccupied habitats and lower selection pressure, favoring an emergence of species diversity. A well-known example is the Darwin’s finches of the Galapagos Islands.

However, species can also fan out rapidly in complex environments that are not isolated. Such cases, however, are little studied, even though they often occur in tropical habitats that harbor most of the animal and plant diversity on Earth.

The research group led by Oscar Puebla, a marine scientist at the ZMT and professor of fish ecology and evolution at the Institute of Chemistry and Biology of the Sea (ICBM) at the University of Oldenburg, Germany, took on hamlet bass to gain insight into the underlying mechanisms of rapid species splitting in coral reefs, a very complex habitat. To do so, the scientists analyzed the genomes of 170 individuals from reefs off Honduras, Belize and Panama.

Hamlet bass live in the coral reefs of the Caribbean, where they occur in numerous species with an amazing variety of colors and patterns. However, they are very similar in most other characteristics and in habitat and diet. At least some species are thought to mimic the color patterns of other reef fishes to have greater success in catching prey, because the prey considers the hamlet perch a harmless neighbor rather than a predator.

“Hamlet perch provide an excellent opportunity to study the genetic drivers of a rapid species split,” explains Oscar Puebla. Based on genome analysis, the scientists found that the split into 18 species likely occurred within the last 10,000 generations, even though the Hamlet perch family tree is about 26 million years old. That’s a splitting rate that is among the fastest in fish.

The research also suggests that the high variability in color patterns is generated by different combinations of alleles in a few genes that have a large effect on pigmentation. Alleles are gene variants that control the expression of a trait such as just the color pattern. Hamlet perch can exchange alleles between species through hybridization, which provides the opportunity to create a variety of color patterns. Such genome architecture allows for accelerated speciation, which would take much longer if it were based on new mutations. It appears to be very common in the animal kingdom.

“Our results allow us to better understand the process of species splitting. The number of species on Earth is a dynamic balance between evolution of new species and species extinction. Nowadays, we mainly worry about the extinction aspect, but species emergence must also be considered.”

– Oscar Puebla

 

News Operation & Maintenance Processing Technologies

Stabilization of plastic exhaust systems during implementation

Published

on

According to the exhaust specialist ATEC from Neu Wulmstorf, the Vario roof flange can be mounted on all roofs with high fitting accuracy. The selection is based on the roof pitch and the required nominal size. In addition, the flange is suitable for temperature classes T200 and T250 – and ATEC has had this certified with a general design approval.

The new product combines two components: first, the flange itself, which provides a stable connection between the roof elevation and the roof structure, and second, the optional seal, a self-adhesive vapor retarder. The company provides two versions: for roof pitches between 0° and 30°, and from 30° to 60°, each in eight nominal sizes between DN60/100 and DN250/315. It is also compatible with plastic and metal exhaust systems up to a nominal operating temperature of ≤ 250 °C.

The flange consists of a stainless steel clamp to which two retaining lugs/articulated brackets are welded at the factory. This is accompanied by a cover plate measuring 450 x 450 mm and 0.5 mm thick. With the help of malleable perforated strips, the exhaust pipe together with the Vario roof flange is screwed into place. This allows the Vario to be used flexibly both in new buildings and in existing properties.

 

Continue Reading

News Operation & Maintenance Processing Technologies

Modern user interface impresses international jury

Published

on

SIG’s new intuitive Human Machine Interface (HMI) “SIG CRUISER” has been awarded the prestigious iF DESIGN AWARD 2022 in Gold – one of the most important design awards in the world. This part of SIG’s next-generation filling technology enables customers to easily control their entire production process. The user interface is designed to make the operator’s job much easier, while reducing the need for training and prior experience.

The award has been presented annually since 1954 by the iF Industrie Forum Design for outstanding achievements in product design. The company impressed the 132-member jury, which is made up of independent design experts from around the world, and won the award in the “User Interface (UI)” category. Out of nearly 11,000 entries, SIG CRUISER was awarded gold as one of 73 outstanding design achievements.

The judges made the following statement, “With a user-centric approach and sound development methodology, SIG CRUISER provides consistency from the store floor to the top floor, ensuring quick response times and convenience for both the operator and the service team. The user interface is exceptionally simple and user-friendly in terms of operations, layout and graphics, allowing a single operator to control the entire line.”

Today’s competitive environment requires companies to increase production and margins and optimize available equipment. To get the most out of filling lines, it is critical to reduce the risk of downtime and to interconnect, automate and monitor lines for maximum efficiency. The new user interface makes it possible to control the entire filling line. It displays KPIs in an intuitive way.

“This prestigious global design award is the result of the good cooperation between SIG and our partner, HMI Project GmbH. We are very proud that SIG CRUISER stood out from thousands of submissions and convinced the 132-member jury to award an iF DESIGN AWARD in Gold.”

– Stefan Mergel, Senior Product Manager Equipment

Continue Reading

Ingredients & Auxiliary Materials News Pharmaceuticals Processing Technologies

Innovative insights into emergence and classification into subtypes

Published

on

One of the deadliest tumor types is pancreatic cancer . The disease is often only discovered in locally advanced or metastasized tumor stages, when surgical intervention comes too late. Researchers led by Dr. Ivonne Regel of LMU Klinikum in Munich have now gained important new insights into the causes of tumor development. They have also succeeded in defining different tumor subtypes based on differences in their metabolic programs. Funded by the Wilhelm Sander Foundation, they are thus making a significant contribution to early detection and to individualized medicine in order to improve the chances of recovery for pancreatic cancer patients.

Pancreatic ductal adenocarcinoma, also known as pancreatic cancer, is a relatively rare but particularly malignant disease. It represents the fourth leading cause of cancer-related deaths in the European Union, and only about 10 percent of patients survive the first five years after diagnosis. This is due to aggressive growth and late diagnosis of the tumor. Pancreatic cancer often manifests itself only after other organs have already been affected and metastases are present. To improve the chance of cure for pancreatic cancer patients, it is of great urgency to find new biomarkers for early detection. Another essential step is to identify tumor-specific signaling pathways that cause aggressive disease progression in order to identify new targets for therapeutic approaches.

TLR3/IRF3/IRF7 signaling pathway critical for pancreatic cancer development

Pancreatic cancer development is a dynamic process involving tissue damage and inflammatory response in the pancreas. When pancreatitis occurs, the organ has a self-healing mechanism. Normal pancreatic cells can divide to replace damaged tissue. Molecules released during inflammatory and tissue-damaging processes are recognized by cell receptors, relaying signals that promote cell survival and division.

However, in pancreatic cells, this can contribute to cell degeneration and promote the development of pancreatic cancer. Researchers led by Dr. Ivonne Regel were able to show for the first time that the signaling pathway plays an important role in inflammatory responses not only in immune cells, but is also active in pancreatic cells of precursor lesions and tumor cells. This activation of the signaling pathway has an important function in pancreatic cancer development. Genetically-altered mice lacking a functional signaling pathway are unable to develop pancreatic carcinomas (see Figure). Similarly, it was genetically knocked out in pancreatic tumor cells using CRISPR/Cas9 gene scissors. These genetically modified tumor cells exhibited significantly less aggressive behavior in cell culture experiments and also showed greatly reduced metastasis in animal models.

“For the first time, we were able to demonstrate that an active signaling pathway in pancreatic cells contributes to the development of pancreatic cancer and also supports the formation of metastases.”

– Ivonne Regel

Dr. Regel’s team has made another exciting discovery: In pancreatic tumor cells, the signaling pathway surprisingly does not regulate known target genes; instead, evidence was found for epigenetic modifications. These are regulatory modifications to DNA and packaging proteins (histones) that influence the activity of genes. Thus, the current research results indicate that activation of the signaling pathway in tumor cells leads to high levels of transcription of specific tumor-promoting genes.

These genes primarily regulate tumor cell metabolism. This is particularly important because metabolites of tumor cells can be found in the blood of patients and can be used as biomarkers. “My team and I have succeeded in identifying different subtypes of pancreatic cancer from the blood of cancer patients based on differences in their metabolic programs” said Dr. Regel. “In further studies, we now want to find out to what extent the development of pancreatic cancer subtypes is regulated by the signaling pathway.”

 

Continue Reading