Connect with us


News

High-tech metals germanium and gallium from the deep sea

Two metals that are of great importance for modern high technologies are germanium and gallium. Both are important raw materials for the semiconductor industry, for fiber optic cables and for photovoltaics. They are thus essential components for shaping electromobility and the energy transition. Using new analytical methods, the research group “CritMET: Critical Metals for Enabling Technologies” led by Dr. Michael Bau, Professor of Geochemistry at Jacobs University in Bremen, Germany, has studied the distribution of germanium and gallium in iron-manganese crusts in the deep sea. The results have now been published in two renowned journals.

In 2020, 66 percent of global germanium production came from China; for gallium, Chinese market dominance is even greater at 97 percent. Because of this dependence and the associated risks to raw material supplies, both the U.S. government and the European Union have included these metals in their lists of critical raw materials. A great deal of effort is being put into searching for deposits around the world, especially since demand for these metals is expected to increase dramatically in the coming years. But the search for raw materials is proving difficult, and so unconventional deposits are also coming under the spotlight.

One way to secure the world’s supply of critical raw materials could be deep-sea mining. Although it is controversial on the one hand because of its unclear impact on the environment, on the other hand it could supply a variety of metals without which, for example, climate policy goals such as the energy turnaround cannot be realized. Recycling is not yet a solution for critical raw materials in the foreseeable future, as these metals have not yet been used in large quantities.

The research group, which is based at Jacobs University in the Earth and Environmental Science and Technology study program, is investigating both potential raw material sources and the environmental behavior of critical raw materials such as rare earths, germanium and gallium. The articles now published summarize the research findings of the group led by Katharina Schier and David Ernst, Professors Michael Bau and Dieter Garbe-Schönberg, and national and international collaborators.

The iron-manganese crusts studied form very slowly on the seafloor of the deep sea. In the process, they trap and accumulate a variety of metals dissolved in seawater. Using new analytical methods, the working group succeeded in reliably determining the concentrations of gallium and germanium in such crusts. The results are of great importance for basic geochemical research, because they help to better understand the transport of metals from the mainland to the oceans.

For applied research, however, they are rather sobering: the contents of gallium and germanium are too low to make the crusts a source of raw materials for these metals in the foreseeable future. But the results also have a positive side, because the researchers were able to show how effectively gallium and germanium are attached to iron oxides and that they can thus be effectively removed from the water and thus from the environment. As all critical metals are released into the environment, and thus into rivers, lakes and groundwater, in ever-increasing quantities due to dramatic increases in their use, methods to prevent this or to clean up the water are becoming increasingly important. The use of iron oxides could be a simple and relatively inexpensive solution here for germanium and gallium.

News Operation & Maintenance Processing Technologies

Stabilization of plastic exhaust systems during implementation

Published

on

According to the exhaust specialist ATEC from Neu Wulmstorf, the Vario roof flange can be mounted on all roofs with high fitting accuracy. The selection is based on the roof pitch and the required nominal size. In addition, the flange is suitable for temperature classes T200 and T250 – and ATEC has had this certified with a general design approval.

The new product combines two components: first, the flange itself, which provides a stable connection between the roof elevation and the roof structure, and second, the optional seal, a self-adhesive vapor retarder. The company provides two versions: for roof pitches between 0° and 30°, and from 30° to 60°, each in eight nominal sizes between DN60/100 and DN250/315. It is also compatible with plastic and metal exhaust systems up to a nominal operating temperature of ≤ 250 °C.

The flange consists of a stainless steel clamp to which two retaining lugs/articulated brackets are welded at the factory. This is accompanied by a cover plate measuring 450 x 450 mm and 0.5 mm thick. With the help of malleable perforated strips, the exhaust pipe together with the Vario roof flange is screwed into place. This allows the Vario to be used flexibly both in new buildings and in existing properties.

 

Continue Reading

News Operation & Maintenance Processing Technologies

Modern user interface impresses international jury

Published

on

SIG’s new intuitive Human Machine Interface (HMI) “SIG CRUISER” has been awarded the prestigious iF DESIGN AWARD 2022 in Gold – one of the most important design awards in the world. This part of SIG’s next-generation filling technology enables customers to easily control their entire production process. The user interface is designed to make the operator’s job much easier, while reducing the need for training and prior experience.

The award has been presented annually since 1954 by the iF Industrie Forum Design for outstanding achievements in product design. The company impressed the 132-member jury, which is made up of independent design experts from around the world, and won the award in the “User Interface (UI)” category. Out of nearly 11,000 entries, SIG CRUISER was awarded gold as one of 73 outstanding design achievements.

The judges made the following statement, “With a user-centric approach and sound development methodology, SIG CRUISER provides consistency from the store floor to the top floor, ensuring quick response times and convenience for both the operator and the service team. The user interface is exceptionally simple and user-friendly in terms of operations, layout and graphics, allowing a single operator to control the entire line.”

Today’s competitive environment requires companies to increase production and margins and optimize available equipment. To get the most out of filling lines, it is critical to reduce the risk of downtime and to interconnect, automate and monitor lines for maximum efficiency. The new user interface makes it possible to control the entire filling line. It displays KPIs in an intuitive way.

“This prestigious global design award is the result of the good cooperation between SIG and our partner, HMI Project GmbH. We are very proud that SIG CRUISER stood out from thousands of submissions and convinced the 132-member jury to award an iF DESIGN AWARD in Gold.”

– Stefan Mergel, Senior Product Manager Equipment

Continue Reading

Ingredients & Auxiliary Materials News Pharmaceuticals Processing Technologies

Innovative insights into emergence and classification into subtypes

Published

on

One of the deadliest tumor types is pancreatic cancer . The disease is often only discovered in locally advanced or metastasized tumor stages, when surgical intervention comes too late. Researchers led by Dr. Ivonne Regel of LMU Klinikum in Munich have now gained important new insights into the causes of tumor development. They have also succeeded in defining different tumor subtypes based on differences in their metabolic programs. Funded by the Wilhelm Sander Foundation, they are thus making a significant contribution to early detection and to individualized medicine in order to improve the chances of recovery for pancreatic cancer patients.

Pancreatic ductal adenocarcinoma, also known as pancreatic cancer, is a relatively rare but particularly malignant disease. It represents the fourth leading cause of cancer-related deaths in the European Union, and only about 10 percent of patients survive the first five years after diagnosis. This is due to aggressive growth and late diagnosis of the tumor. Pancreatic cancer often manifests itself only after other organs have already been affected and metastases are present. To improve the chance of cure for pancreatic cancer patients, it is of great urgency to find new biomarkers for early detection. Another essential step is to identify tumor-specific signaling pathways that cause aggressive disease progression in order to identify new targets for therapeutic approaches.

TLR3/IRF3/IRF7 signaling pathway critical for pancreatic cancer development

Pancreatic cancer development is a dynamic process involving tissue damage and inflammatory response in the pancreas. When pancreatitis occurs, the organ has a self-healing mechanism. Normal pancreatic cells can divide to replace damaged tissue. Molecules released during inflammatory and tissue-damaging processes are recognized by cell receptors, relaying signals that promote cell survival and division.

However, in pancreatic cells, this can contribute to cell degeneration and promote the development of pancreatic cancer. Researchers led by Dr. Ivonne Regel were able to show for the first time that the signaling pathway plays an important role in inflammatory responses not only in immune cells, but is also active in pancreatic cells of precursor lesions and tumor cells. This activation of the signaling pathway has an important function in pancreatic cancer development. Genetically-altered mice lacking a functional signaling pathway are unable to develop pancreatic carcinomas (see Figure). Similarly, it was genetically knocked out in pancreatic tumor cells using CRISPR/Cas9 gene scissors. These genetically modified tumor cells exhibited significantly less aggressive behavior in cell culture experiments and also showed greatly reduced metastasis in animal models.

“For the first time, we were able to demonstrate that an active signaling pathway in pancreatic cells contributes to the development of pancreatic cancer and also supports the formation of metastases.”

– Ivonne Regel

Dr. Regel’s team has made another exciting discovery: In pancreatic tumor cells, the signaling pathway surprisingly does not regulate known target genes; instead, evidence was found for epigenetic modifications. These are regulatory modifications to DNA and packaging proteins (histones) that influence the activity of genes. Thus, the current research results indicate that activation of the signaling pathway in tumor cells leads to high levels of transcription of specific tumor-promoting genes.

These genes primarily regulate tumor cell metabolism. This is particularly important because metabolites of tumor cells can be found in the blood of patients and can be used as biomarkers. “My team and I have succeeded in identifying different subtypes of pancreatic cancer from the blood of cancer patients based on differences in their metabolic programs” said Dr. Regel. “In further studies, we now want to find out to what extent the development of pancreatic cancer subtypes is regulated by the signaling pathway.”

 

Continue Reading