Connect with us


News

Breakthrough in drug discovery

Published

on


News, Pharmaceuticals, Processing Technologies, Quality Management

Silicon Valley-based drug development company Verseon now sees itself at just that point, having developed its own AI and physics-driven technology platform to develop new drugs atom by atom. Verseon’s chief technology officer, Sangtae Kim, a member of the U.S. National Academy of Engineering, says the platform is far more sophisticated than other drug developers’ “AI systems” because it enables Verseon to design entirely new chemical structures needed to fight currently incurable diseases.

He points out that AI is only as effective as the data it can learn from, as evidenced by the problems in developing “self-driving” vehicles. As highlighted in recent Impact Wealth Magazine coverage, Verseon has broken free from this conventional approach and is bringing much-needed new treatments for cancer, heart disease and other deadly diseases to market. The company is also developing products that slow human aging and increase longevity.

Many market observers now believe that despite its $1 trillion a year in patent-protected revenues, the pharmaceutical industry, with its error-prone trial-and-error approach to drug development, is a growing obstacle to the development of much-needed therapies. Verseon’s founders recognized that the systematic development of entirely new drugs would require breakthroughs in molecular physics modeling to determine how a new chemical structure binds to a disease-causing protein.

Using its platform, the company has identified multiple new clinical candidates for each of its programs – a feat unprecedented in the pharmaceutical industry. The management team holds over 200 patents in total and is no stranger to breakthroughs. Co-founders Adityo Prakash and Eniko Fodor have patented technologies now owned by Intel that enable all video streaming from Amazon Prime to Zoom. Verseon’s third founder, David Kita, developed one of the first bioinformatics platforms that sparked the genomics revolution.

And Sangtae Kim – a former vice president at major pharmaceutical company Eli Lilly and chairman of Purdue’s Chemical Engineering Division – is now driving further improvements to the powerful AI and proprietary datasets.

“The platform includes significant new advances in several different branches of science. Each of these advances would be greeted with enthusiasm by leading professionals in their respective fields, but taken as a whole, it is virtually unattainable by any other company. It is by far the most advanced ab initio method of drug development currently available.”

– Sangtae Kim

Verseon is currently testing drugs with remarkably low bleeding risk to treat and prevent heart attacks and strokes in more than 400 million patients worldwide. Uncontrolled bleeding is the biggest risk factor associated with current alternatives. One of the world’s leading cardiologists, John Deanfield, professor of cardiology at University College London, commented, “Platelet-sparing anticoagulants … represent an exciting opportunity in ‘precision medicine’ for the treatment of a large group of patients with cardiovascular disease.”

The company is also developing oral medicines to treat diabetic vision loss in more than 154 million patients, treatments for coronavirus and influenza, and three different programs to fight cancer – one of the world’s biggest killers. All of these products are part of a rapidly growing drug pipeline with 16 drug candidates in eight programs. Robert Karr, Pfizer’s former SVP of R&D Strategy, commented, “This platform finally ushers in the era of systematic drug discovery.”

News Operation & Maintenance Processing Technologies

Stabilization of plastic exhaust systems during implementation

Published

on

According to the exhaust specialist ATEC from Neu Wulmstorf, the Vario roof flange can be mounted on all roofs with high fitting accuracy. The selection is based on the roof pitch and the required nominal size. In addition, the flange is suitable for temperature classes T200 and T250 – and ATEC has had this certified with a general design approval.

The new product combines two components: first, the flange itself, which provides a stable connection between the roof elevation and the roof structure, and second, the optional seal, a self-adhesive vapor retarder. The company provides two versions: for roof pitches between 0° and 30°, and from 30° to 60°, each in eight nominal sizes between DN60/100 and DN250/315. It is also compatible with plastic and metal exhaust systems up to a nominal operating temperature of ≤ 250 °C.

The flange consists of a stainless steel clamp to which two retaining lugs/articulated brackets are welded at the factory. This is accompanied by a cover plate measuring 450 x 450 mm and 0.5 mm thick. With the help of malleable perforated strips, the exhaust pipe together with the Vario roof flange is screwed into place. This allows the Vario to be used flexibly both in new buildings and in existing properties.

 

Continue Reading

News Operation & Maintenance Processing Technologies

Modern user interface impresses international jury

Published

on

SIG’s new intuitive Human Machine Interface (HMI) “SIG CRUISER” has been awarded the prestigious iF DESIGN AWARD 2022 in Gold – one of the most important design awards in the world. This part of SIG’s next-generation filling technology enables customers to easily control their entire production process. The user interface is designed to make the operator’s job much easier, while reducing the need for training and prior experience.

The award has been presented annually since 1954 by the iF Industrie Forum Design for outstanding achievements in product design. The company impressed the 132-member jury, which is made up of independent design experts from around the world, and won the award in the “User Interface (UI)” category. Out of nearly 11,000 entries, SIG CRUISER was awarded gold as one of 73 outstanding design achievements.

The judges made the following statement, “With a user-centric approach and sound development methodology, SIG CRUISER provides consistency from the store floor to the top floor, ensuring quick response times and convenience for both the operator and the service team. The user interface is exceptionally simple and user-friendly in terms of operations, layout and graphics, allowing a single operator to control the entire line.”

Today’s competitive environment requires companies to increase production and margins and optimize available equipment. To get the most out of filling lines, it is critical to reduce the risk of downtime and to interconnect, automate and monitor lines for maximum efficiency. The new user interface makes it possible to control the entire filling line. It displays KPIs in an intuitive way.

“This prestigious global design award is the result of the good cooperation between SIG and our partner, HMI Project GmbH. We are very proud that SIG CRUISER stood out from thousands of submissions and convinced the 132-member jury to award an iF DESIGN AWARD in Gold.”

– Stefan Mergel, Senior Product Manager Equipment

Continue Reading

Ingredients & Auxiliary Materials News Pharmaceuticals Processing Technologies

Innovative insights into emergence and classification into subtypes

Published

on

One of the deadliest tumor types is pancreatic cancer . The disease is often only discovered in locally advanced or metastasized tumor stages, when surgical intervention comes too late. Researchers led by Dr. Ivonne Regel of LMU Klinikum in Munich have now gained important new insights into the causes of tumor development. They have also succeeded in defining different tumor subtypes based on differences in their metabolic programs. Funded by the Wilhelm Sander Foundation, they are thus making a significant contribution to early detection and to individualized medicine in order to improve the chances of recovery for pancreatic cancer patients.

Pancreatic ductal adenocarcinoma, also known as pancreatic cancer, is a relatively rare but particularly malignant disease. It represents the fourth leading cause of cancer-related deaths in the European Union, and only about 10 percent of patients survive the first five years after diagnosis. This is due to aggressive growth and late diagnosis of the tumor. Pancreatic cancer often manifests itself only after other organs have already been affected and metastases are present. To improve the chance of cure for pancreatic cancer patients, it is of great urgency to find new biomarkers for early detection. Another essential step is to identify tumor-specific signaling pathways that cause aggressive disease progression in order to identify new targets for therapeutic approaches.

TLR3/IRF3/IRF7 signaling pathway critical for pancreatic cancer development

Pancreatic cancer development is a dynamic process involving tissue damage and inflammatory response in the pancreas. When pancreatitis occurs, the organ has a self-healing mechanism. Normal pancreatic cells can divide to replace damaged tissue. Molecules released during inflammatory and tissue-damaging processes are recognized by cell receptors, relaying signals that promote cell survival and division.

However, in pancreatic cells, this can contribute to cell degeneration and promote the development of pancreatic cancer. Researchers led by Dr. Ivonne Regel were able to show for the first time that the signaling pathway plays an important role in inflammatory responses not only in immune cells, but is also active in pancreatic cells of precursor lesions and tumor cells. This activation of the signaling pathway has an important function in pancreatic cancer development. Genetically-altered mice lacking a functional signaling pathway are unable to develop pancreatic carcinomas (see Figure). Similarly, it was genetically knocked out in pancreatic tumor cells using CRISPR/Cas9 gene scissors. These genetically modified tumor cells exhibited significantly less aggressive behavior in cell culture experiments and also showed greatly reduced metastasis in animal models.

“For the first time, we were able to demonstrate that an active signaling pathway in pancreatic cells contributes to the development of pancreatic cancer and also supports the formation of metastases.”

– Ivonne Regel

Dr. Regel’s team has made another exciting discovery: In pancreatic tumor cells, the signaling pathway surprisingly does not regulate known target genes; instead, evidence was found for epigenetic modifications. These are regulatory modifications to DNA and packaging proteins (histones) that influence the activity of genes. Thus, the current research results indicate that activation of the signaling pathway in tumor cells leads to high levels of transcription of specific tumor-promoting genes.

These genes primarily regulate tumor cell metabolism. This is particularly important because metabolites of tumor cells can be found in the blood of patients and can be used as biomarkers. “My team and I have succeeded in identifying different subtypes of pancreatic cancer from the blood of cancer patients based on differences in their metabolic programs” said Dr. Regel. “In further studies, we now want to find out to what extent the development of pancreatic cancer subtypes is regulated by the signaling pathway.”

 

Continue Reading